SIMDLA: A FORTRAN Program
Simulating Diffusion-Limited Aggregation

Lisa Anne Renker
D. G. Wilson
SIMDLA: A FORTRAN Program Simulating Diffusion-Limited Aggregation

Lisa Anne Renker
Baldwin-Wallace College

D. G. Wilson

Date Published - August 1988

Research sponsored by the
Applied Mathematical Sciences Research Program
U.S. Department of Energy
Office of Energy Research

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400
Table of Contents

Abstract ... 1

Introduction ... 1

A. Diffusion-Limited Aggregation ... 2

B. The Program .. 4
 1. Comparison with the Witten-Sander Model .. 4
 2. Input and Output Files .. 5
 2.1 Input File .. 5
 2.2 Output File .. 6
 3. Implementation Details .. 9
 3.1 Data Structure .. 9
 3.2 Program Organization .. 10
 3.3 Choosing a Starting Point ... 13
 3.4 Taking a Step .. 14
 3.5 Attaching a Particle ... 14

C. Suggestions for Variations or Further Developments .. 15

Acknowledgments .. 16

Bibliography ... 16
SIMDLA: A FORTRAN PROGRAM SIMULATING DIFFUSION-LIMITED AGGREGATION

Lisa Anne Renker
Baldwin-Wallace College

D. G. Wilson
Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

ABSTRACT

This report documents a FORTRAN program designed to simulate the diffusion-limited aggregation of particles. Particles are released one at a time from a growing internal boundary on a grid of possible sites and allowed to walk randomly until either they stick to the growing cluster or walk off the grid. The user may specify the grid dimension, the number of particles to be added to the cluster, the location and size of the seed cluster, and the possible directions (up to eight) in which particles are allowed to move. The output is a list of the occupied cells after all particles have been added to the cluster. A graphics post processor creates pictures from this list.

INTRODUCTION

The FORTRAN program described in this paper simulates diffusion-limited aggregation (DLA). DLA is thought to form dendritic-like fractals with a fractal dimension of about 1.7. This program was originally designed to experiment with growing aggregates on a grid of hexagonal cells to observe what patterns of growth would form. It has been modified to allow other cell shapes. The user supplies the size of the grid, the number of particles to be added to the cluster, the size of the seed, and the initially occupied seed cells. The program allows the particles to move in up to eight directions that the user specifies (specifying a certain six will result in a grid of hexagonal cells). Particles are released one at a time at a growing internal
boundary of the grid and allowed to walk randomly until either they move to a cell next to an occupied cell or they walk off the grid, at which time a new particle is released. Here, “walk off the grid” means to move out a specified distance beyond the growing internal boundary around the cluster. The output file is a list of occupied cells.

Section A is a summary of some articles on diffusion-limited aggregation and how DLA relates to fractals. Section B deals with the program itself beginning with a subsection that includes a description of the differences between our model and the Witten and Sander model. The second subsection of section B includes sample input and output files. Subsection 3 is further divided into subsections that describe the details of the program. A flowchart is given for the main program, and pseudocodes are given for the subroutine to choose a starting place for a particle and the subroutine to attach a particle to the cluster. The data structure used is explained and a diagram given. The method for taking a step is also described in subsection 3. The paper ends with some suggestions for variations or further development of the program.

A. DIFFUSION-LIMITED AGGREGATION

This paper is concerned with diffusion-limited aggregation (DLA). DLA is thought to produce fractal patterns that resemble dendrites. The motivation for this computer program was the study of dendritic growth, but the aggregation of particles into clusters has many other applications. A detailed literature search on this and similar subjects relating to phase change processes and fractals can be found in Renker and Wilson [8].

The program is based on the DLA model proposed by Witten and Sander [13,14]. Their model, in turn, is based on the Eden model [1]. The Eden model is a simple model for the growth of wispy-looking clusters of particles. It is a lattice model in which particles are added one at a time to random sites adjacent to occupied sites. The result of this aggregation process is a relatively compact cluster with density correlations that are independent of distance as the number of particles increases without bound.

Here we give a brief description of the model proposed by Witten and Sander. Initially a seed particle is located at the origin of a square lattice. Another particle is added at a random spot that is a large distance from the origin. This particle walks randomly on the grid. If the particle walks to a site that is adjacent to
the seed, then that particle is added to the cluster and remains in that spot. The other possibility is that the particle could step off the boundary of the lattice. In either case, the process begins again with a new particle. The process is repeated as many times as specified by the number of particles to be released.

Witten and Sander [13,14] examined the density correlation function to obtain more information about the particle distribution in their model. The density \(\rho(r) \) is defined to be 1 for occupied sites and 0 for unoccupied sites. The density correlation function for an aggregate of \(N \) particles in two dimensions is:

\[
C(r) = N^{-1} \sum_{r'} \rho(r') \rho(r' + r)
\]

where the sum on \(r' \) is over all occupied sites and \(r \) is the step distance separating two sites averaged over all possible directions (\(r \) must be greater than a few lattice spacings, but much less than the size of the aggregate). Suppose, for example, we wanted the density correlation function at a distance of 4. Then for every particle of the aggregate, we would determine how many occupied particles were exactly 4 steps away from that particle in each possible direction. We average the totals obtained over all possible directions and divide by the total number of particles in the aggregate. The result would be \(C(4) \).

The density correlation function conforms to a power-law relationship: \(C(r) \propto r^{-\alpha} \). This power-law form is consistent with a fractal dimension \(D \) that characterizes the object by \(D = d - \alpha \) (\(d \) is the Euclidean dimensionality of the cluster). The radius of gyration \((R_g) \) can also be used to determine the fractal dimension. \(R_g \) has a power-law dependence on the number of particles for large \(N \), i.e., \(R_g \propto N^{\beta} \). The fractal dimension is then \(D = 1/\beta \) [13].

The objects produced by this DLA model were thought to be fractal when the correlations between two particle positions were examined closely by Witten and Sander [14], and Meakin [4,5]. The correlations were found to be typical of a scale-invariant object, i.e., the patterns grown had no natural length scale. The DLA growth formations are tenuous and wispy and do not fill a finite fraction of space. They have large holes owing to the screening effect because the fingers formed make it difficult for particles to walk into the gap between the fingers, so the particles are more likely to stick to the tips of the fingers. According to Sander [9], these holes must be on the order of the size of the object itself.
B. THE PROGRAM

1. COMPARISON WITH THE WITTEN-SANDER MODEL

This program implements a variation of the model proposed by Witten and Sander. One difference is that the program was originally designed with grid cells shaped like hexagons. This allowed six possible directions in which to go at each step of the random walk. The program was later modified in order to incorporate other grid cell shapes and structures so that now there are eight possible directions in which moves can be made. Figure 1 demonstrates the numbering scheme for two different grids. The grid cell shape is determined by directions specified in the input file.

![Square and Hexagon Grids]

a.) A square close packed grid

b.) A hexagonally close packed grid

Figure 1.

Another difference is that we have incorporated Meakin's [4] idea of having an internal boundary that grows as the cluster size grows. This is done because as the grid size increases, the probability that a
particle released at the edge will make it to the cluster near the center of the grid decreases greatly. A large
number of particles must be used to ensure that several of them stick. This results in much time wasted
because most of the particles walk off the grid. This tendency is reduced by setting up a second boundary a
few lattice spaces larger than the current cluster size. The particle then begins at that internal boundary and
is considered finished if it oversteps a somewhat larger boundary. The radius of the internal boundary is
increased as the size of the cluster increases, until the internal boundary reaches the edge of the grid. This
process could be thought of as an accelerated version of the original model because it is equivalent to
assuming that some number of particles would have reached that internally bounded section of the grid
after a certain number of particles were released.

In this program, a particle is started at a random spot on the edge of the internal boundary and allowed
to perform a random walk on the grid until either it visits a cell adjacent to one that is already occupied or it
walks off a boundary with a radius that is ten units larger than the boundary it started on. When one of
those two possibilities occurs, a new particle is started at the internal boundary. The size of the internal
boundary increases as the radius of the cluster increases. The program is terminated when the specified
number of particles has been added to the cluster.

2. INPUT AND OUTPUT FILES

2.1 Input File

The input file contains the desired size of the grid, the number of particles to be added to the cluster,
how many cells will initially be occupied, the locations of these initially occupied cells, and a random
number to be used as a seed for the random number generator. The desired size of the grid is the
dimension of one edge of the grid. The program is set up so that a particle may move in any of up to eight
directions. The input file specifies in how many directions the particle may move and allows the user to
choose those directions. An example of an input file follows. This example is the data used to simulate a
grid of hexagonally close packed locations with a seed of five cells. All the entries are left justified and are
explained on the right.
The output file contains as its first entry, the dimension of one side of the grid. This is written to the output file as part of the initialization process. After that, the output consists of a list of the occupied cells in order of their addition to the aggregate beginning with the seed cells. Each cell is written to the file as it is attached to the cluster by the *stick* subroutine. The end of file is signalled to the graphics program by a pair of negative numbers that are written by the last executable statement of the program. A series of pictures obtained using the graphics program during two simulations are shown in Figures 2 and 3. The pictures in Figure 2 show the growth of a small aggregate on a grid of hexagonally close packed locations of dimension 40 x 40. The pictures in Figure 3 show the growth of an aggregate on a square grid of dimension 3000 x 3000. A small sample output file obtained from another simulation follows.
Figure 2. The growth of an aggregate on a hexagonally close packed grid with a.) 50 particles stuck, b.) 70 particles stuck, and c.) 100 particles stuck.
Figure 3. The growth of an aggregate on a square close packed grid with
a.) 1000 particles stuck, b.) 3000 particles stuck, c.) 5000
particles stuck, d.) 8000 particles stuck, and e.) 10000 particles stuck.
3. IMPLEMENTATION DETAILS

3.1 Data Structure

The data structure used is a set of four one-dimensional arrays that form a set of linked lists, one for each row of the grid. This data structure is used to avoid having to store a great many zeroes corresponding to unoccupied cells. The dimension of the array, irow, is the size of one edge of the grid itself. It has an entry of zero or an integer for each row on the grid. The zero signifies that none of the cells in that row are occupied. The integer signifies that there is at least one cell occupied and identifies which entry it is in array ientry.

The dimension of the arrays ientry and jentry (and iptr) is the number of particles to be added to the cluster. ientry and jentry are the first and second index of an occupied cell and iptr is the index of the entry in ientry (and jentry) where the coordinates of the next occupied cell in that row are stored (in ascending order). A particle is added to the end of these arrays when it has stuck to the cluster. Next is the pointer to the next available position where an occupied cell can be added to the list.

This data structure saves on storage, but trades that savings for more computation time. Suppose the dimension of a grid is 3000 x 3000 and the number of particles to be added to the cluster is 40,000. Then having an array the size of the grid itself would result in a storage of 9,000,000 cells, and only a small percentage (less than 1%) of those cells would be occupied. 9,000,000 exceeds the available storage on our computer. Using the data structure just described, only 40,000 cells of storage are needed. Locating a specific cell in the list of occupied cells requires one computation in the first case. However, locating a
cell in the second case could require at most 3000 (the grid size) computations. This worst case occurs only when every cell in a row is occupied and we are trying to locate the last cell in that row. Even though there may be a large increase in the computation time required, the linked list data structure is better because it allows for a larger grid size.

A pictorial representation of the data structure is shown in Figure 4. This diagram represents one stage in a simulation with a grid size of 10 x 10 with 20 particles to be added to the cluster. Eleven particles have already stuck to the cluster. In this diagram, (5,5) is the seed particle and therefore the first cell added to the list of occupied cells. To determine whether a certain cell was occupied in row 6, for example, first look at the sixth entry in irow. This has a value of 7. This 7 tells us to look in the seventh entries of the other three arrays for the first cell in row 6 that is occupied. In this case, its coordinates are (6,3). iptr(7) is five. This is the pointer to the next set of entries in the linked list. This five means that the next entry in row 6 of the grid is located in the fifth entries of the arrays. The coordinates of this entry are (6,4). The index of the next occupied cell in row 6 is in iptr(5). Therefore, the next occupied cell in row 6 is (6,5). The 0 in iptr(3) signifies that the end of the list for row 6 has been reached.

3.2 Program Organization

The main processing of the program is done in a subroutine named controller. A flow chart for this subroutine is shown in Figure 5. A starting point for the random walk is chosen. If the starting point is already occupied, a new particle is introduced and the process of choosing a starting point begins again. If the starting point is not occupied, then the neighbors are checked for occupation. (The only neighbors checked are those that are in the user specified allowable directions list.) Subroutine checkneighbours returns a value of true or false in the form of the variable found to the controller subroutine. If a neighbor was found to be occupied then the stick routine is called and the new cell is added to the list of occupied cells. If none of the neighbors were occupied, then the mkmove subroutine is called.
Figure 4. The data structure is a set of arrays that form a linked list.
Figure 5. The flow chart for the main loop of the program.
3.3 Choosing a Starting Point

A starting position on the edge of the grid is chosen as follows. Three random numbers in (0,1) are generated. Using the square grid as a simple example, the first random number decides which set of sides the particle will start on, the top and bottom rows or the two sides. This choice determines which index will be set, the row index or the column index. The second random number determines which row or which side out of the two that the starting position will be on. Once the starting edge has been picked, the exact cell must be chosen. The remaining index is equal to the integer portion of two times the product of the third random number and the current radius of the cluster, plus a constant to ensure that the result is in the desired range. This method ensures that all starting locations on the internal boundary are equally likely. The logic of this method is shown in the following pseudocode. This has been simplified by assuming that the particle starts on the edge of the grid rather than on an internal boundary within the grid.

```plaintext
choose three random numbers
    hold=int(3rd number * size of the grid) + 1
    if 1st number < .5
        j index=hold
    if 2nd number < .5
        i index=1
    else
        i index=size of the grid
    else
        i index=hold
    if 2nd number < .5
        j index=1
    else
        j index=size of the grid
```

The method used for determining the boundary on a grid of hexagonally close packed locations is similar to the above method, but slightly more complicated.
3.4 Taking a Step

The array named prob contains the values of the intervals used in moving the particle. Using the input file given earlier, the intervals of probabilities would be divided into sixths. For example, prob(1)=1/6, prob(3)=2/6, prob(4)=3/6, prob(5)=4/6, prob(7)=5/6, and prob(8)=6/6 because the respective entries in the input file had the value of true. The other two prob entries (2 and 6), corresponding to false values in the input file, would be set equal to the value of the previous prob entry, so prob(2)=1/6 and prob(6)=4/6. The reason for this will be seen in the explanation of the mkmov subroutine.

The mkmov subroutine chooses a random number between zero and one. Then the eight intervals (0 → prob(1), prob(1) → prob(2), etc.) are checked. The particle moves in the appropriate direction depending on which interval the random number falls in. The reason for setting the prob entries that correspond to a value of false in the input file equal to the preceding prob entry is that the random number cannot fall in that half closed, half open interval, thus, the particle cannot move in that direction. If, for example, the random number fell between 1/6 and 2/6, the particle should move in the second allowable direction. Setting prob(2) equal to prob(1) ensures that the direction associated with the prob(1) → prob(2) interval, [1/6,1/6), will not be chosen because that interval is empty.

Mkmov returns a value of “true” or “false” in the form of the variable again. This variable is set to true if the particle has not moved off the specified boundary edge. If again is true, the process of checking neighbors and moving that particle begins again. If again is false, that particle is finished and a new particle is released, starting the entire loop again. This loop is executed until the desired number of particles have been added to the cluster.

3.5 Attaching a Particle

The subroutine for adding a particle to the list of occupied cells is called after the particle has moved to a cell adjacent to an occupied cell. This involves updating the appropriate linked list and switching a few pointers. The pseudo-code follows. (Refer to the diagram in section 3.1 for the data structure.) Spot and hold are pointers.
spot=irow(i index)
hold=spot

enter the current i and j indices in the next available position
if spot = 0 (*no entries in that row*)
 irow(i index)=next
 iptr(next)=0
else
 if jentry(spot)>j index (*attach to beginning of row list*)
 iptr(next)=spot
 if hold=spot (*attach to beginning of occ. list*)
 irow(i index)=next
 else
 iptr(hold)=next
 else (*keep looking for place in list*)
 hold=spot
 spot=iptr(spot)
goto 200

C. SUGGESTIONS FOR VARIATIONS OR FURTHER DEVELOPMENTS

One interesting variation of the program would result from changing the sticking probabilities. Particles could be given a probability of sticking each time they hit the cluster and thus they might bounce around for a while. Also, the program could be modified to make the probability of sticking on the tips lower and increase the probability of sticking in places where many neighbors are occupied. That is, the sticking probability would be smaller or larger on the perimeter sites depending on whether there were fewer or more neighbors occupied.

Another possibility is to model cluster aggregation. More than one particle could be released at a time and if that particle met another one, they would join. Clusters could also be released and allowed to attach to other clusters or single particles. (This model is discussed by Meakin [5].)

One more area of potential interest is to expand the model to three dimensions. Instead of having a hexagon shaped grid cell, we could have a three dimensional figure with twelve neighbors instead of six. This is three dimensional hexagonal close packing, and can be pictured by imagining dodecahedrons set on top of other dodecahedrons. These would rest on every other corner of the lower hexagons, so each cell would have six neighbors in its own plane, three more neighbors above and three more neighbors below. These are just a few suggestions, the possibilities are endless.
ACKNOWLEDGMENTS

We would like to acknowledge Ray Flanery for suggesting the data structure used and also for the graphics programs needed to generate the pictures produced from the output of SIMDLA.

We would also like to acknowledge Colin Sheppard for supplying us with numerous ideas and programming suggestions.

BIBLIOGRAPHY

INTERNAL DISTRIBUTION

1. V. Alexiades
2. B. R. Appleton
3. L. C. Cain
4. C. S. Daw
5. J. B. Drake
6. Y. H. Etheridge
7. R. E. Flaney
8. G. A. Geist
9. L. J. Gray
10-11. R. F. Harbison
12. M. T. Heath
13. T. L. Hebble
14. T. Kaplan
15-19. J. K. Ingersoll
20. S. M. Lenhart
21. S. H. Liu
22. J. M. Macdonald
23-27. F. C. Maienschein
28. M. D. Morris
29. G. Ostroumov
30. C. J. Remenyik
31-35. R. C. Ward
36-40. D. G. Wilson
41. P. H. Worley
42. Central Research Library
43. K-25 Plant Library
44. ORNL Patent Office
45. Y-12 Technical Library
46. /Document Reference Station
47-48. Laboratory Records - RC
49. Laboratory Records Department

EXTERNAL DISTRIBUTION

49. Dr. Donald M. Austin, ER-7, Applied Mathematical Sciences, Scientific Computing Staff, Office of Energy Research, Office G-437, Germantown, Washington, DC 20545
50. Dr. George I. Bell, T-7 Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
51. Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, NM 87545
52. Professor Alfredo Bermúdez de Castro, Universidad De Santiago, Dep. de Ecuaciones Funcionales, Facultad de Matematicas, Santiago de Compostela, SPAIN
53. Dr. Sam Coriell, U. S. National Bureau of Standards, Mathematical Analysis Section, Washington, DC 20234
54. Dr. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011
55. Dr. John J. Doming, Department of Nuclear Engineering and Engineering Physics, Thornton Hall, University of Virginia, Charlottesville, VA 22901
56. Professor Antonio Fasano, Istituto Matematico Ulisse Dini, V. Le Morgagni 67/A, 50134 Firenze, ITALY
57. Professor Michael Fremond, Laboratoire Central des Pontes et Chaussees, Direction Scientific, 58 Boulevard Lefebvre, F-75732 Paris Cedex 15, FRANCE
58. Dr. Robert M. Haralick, Department of Electrical Engineering, University of Washington, Seattle, WA 98195
59. Professor Dr. Karl-Heinz Hoffmann, Angewandte Mathematik I, Universität Augsburg, Memminger Strasse 6, D-8900 Augsburg, WEST GERMANY

60. Dr. Hans G. Kaper, Mathematics & Computer Science, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

61. Dr. Robert J. Kee, Applied Mathematics Division, 8331, Sandia Laboratories, Livermore, CA 94550

62. Dr. W. Kurz, Laboratoire de metallurgie physique, Ecole polytechnique federale de Lausanne, Ch. de Bellerive 34-1007, Lausanne, SWITZERLAND

63. Dr. Alex Lehoczky, ES72 Space Science Laboratory, Marshall Space Flight Center, Huntsville, AL 35812

64. Dr. Richard A. Little, Mathematics and Computer Science Department, Baldwin-Wallace College, Berea, OH 44017

65. Dr. Basil Nichols, T-7, Mathematical Modeling and Analysis, Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, NM 87545

66. Professor Marek Niezgodka, Systems Research Institute, ul Nowelska 6, 01-447 Warszawa, POLAND

67. Professor John R. Ockendon, Oxford University Computing Center, 24 St. Giles, Oxford OX1 3LB, UNITED KINGDOM

68. Dr. Ronald Peierls, Applied Mathematics Department, Brookhaven National Laboratory, Upton, NY 11973

69. Professor Mario Primiciero, Inst. Matematico Ulisse Dini, Via Morgagni 67/A, I-50134 Firenze, ITALY

70. Ms. Lisa Renker, 15161 Dogwood Circle, Middleburg Heights, OH 44130

71. Dr. Timothy Riggle, Mathematics and Computer Science Department, Baldwin-Wallace College, Berea, OH 44017

72. Dr. Raoul Robert, Laboratoire I. M. A. G., B. P. No 68, 38402 Saint Martin d’ Heres Cedex, FRANCE

73. Professor L. M. Sander, Physics Department, University of Michigan, Ann Arbor, MI 48109

74. Dr. Lawrence F. Shampine, Numerical Mathematics Division, S642, Sandia Laboratories, P. O. Box 5800, Albuquerque, NM 87115

75. Professor Dr. Jürgen Sprekels, Angewandte Mathematik I, Universität Augsburg, Memminger Strasse 6, D-8900 Augsburg, WEST GERMANY

76. Dr. Don Steiner, Institute Professor, Department of Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181

77. Dr. Frank Szofran, ES72 Space Science Laboratory, Marshall Space Flight Center, Huntsville, AL 35812

78. Dr. Karl Hermann Tacke, Sonnerbergstrasse 7, 8134 Adliswil, SWITZERLAND

79. Professor Domingo Alberto Tarzia, Programme de Mathematique Pura y Aplicada, Instituto de Matematica "Beppo Levi," Universidad Nacional de Rosario, Avenida Pelliqrini 250, 2000 Rosario, ARGENTINA
84. Professor Rohit Trivedi, Ames Laboratory, Iowa State University, Ames, IA 50011

85. Professor Burton Wendroff, Mathematics Division, Los Alamos Scientific Laboratory, Los Alamos, NM 97544

87-97. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37830